
FDATA Support
Parameter page addition

Fri, Apr 26, 2002

The basic system code for IRMs and PowerPC nodes supports raw floating point data 
channels. But this support has yet to be added to PAGEPARM, the Parameter page application. 
This note explores how to add such support.

The PARM application uses one-shot requests to obtain analog descriptor information to 
format a line for each of up to 14 devices on the little console display. It issues requests to 
obtain 2-byte readings and settings from the ADATA table at 15 Hz, and it also requests 
alarm information to be returned every 2 seconds. This information includes the 2-byte 
nominal and tolerance words, plus the 2-byte alarm flags and trip count, all from ADATA.

Raw floating point data
The raw floating point data is housed in the FDATA table, which includes 4-byte 

floating point reading, setting, nominal, and tolerance values. A bit in the alarms flag word 
(mask 0x1000) is set to designate a channel whose data is raw floating point. For such 
channels, the scale factors in the analog descriptor are not used; instead, the values of such 
channels only exist as raw floating point. When there are engineering units, such channel’s 
floating point values are understood to be in those units.

Floating point channel data is generated by local applications; there is no standard Data 
Access Table support that produces such raw floating point readings. In addition, raw 
floating point setting support must be handled by local applications; there is no specific 
setting action that results from a raw floating point setting. When such a setting is made, the 
only direct result is that the setting value is placed into the FDATA raw floating point setting 
field. If other action should result, a local application must undertake to make it happen.

The alarm system includes support for these raw floating point channels. During the alarm 
scan, when such a channel is encountered, the raw floating point nominal and tolerance 
values from the FDATA table are used instead of the usual 2-byte values in the ADATA 
table.

Changes to PAGEPARM
Returning to the issue at hand, what changes should be made to PAGEPARM to support 

such channels? In addition to requesting 15 Hz readings and settings from the ADATA table, 
we can increase that request so that 15 Hz raw floating point readings and settings are also 
returned. This means that data will be collected that is not needed, but it makes the 
implementation easier. Note that the list of up to 14 channels may include an arbitrary mix of 
2-byte integer and 4-byte floating point channels. Likewise, the request for 2-second nominal 
and tolerance values can also be increased to include the raw floating point nominal and 
tolerance fields from the FDATA table. In this way, all necessary data will be available, 
independent of whether or not the channels are designated floating point. When displaying 
values in the “number field,” the integer channels will have to be scaled using the descriptor 
scale factors. For raw floating point channels, the values need no scaling.

When performing settings to integer channels, the value entered in the number field has to be 
reverse-scaled to get the raw 2-byte setting value, whereas for raw floating point channels, 
the value can be used directly. Of course, the listype specified, as well as the data size, must 
be chosen correctly. It may be helpful to eliminate the reverse-scaling step for the integer 



case, instead using the listype that causes the scaling to be done in the target system. Such 
changes can simplify the application code, once considered the most complex of all page 
applications. (Historical note: This assessment was made at a time when for many years only 
4 page applications existed: parameter, analog descriptor, binary descriptor, and memory 
dump.) But in order to detect when a setting reaches an extreme range for 16-bit values, it 
may still be necessary to perform the reverse scaling. This argument may not apply if the 
reverse-scaling done in the target station clamps to the extreme value, which it does.

One could consider doing all data collection in floating point, by using the listypes suited to 
that purpose. But what would be lost is the ability to view the data values in unscaled units, 
either raw volts or raw hexadecimal. (When the parameter page displays raw hexadecimal 
value readings, the average values are ignored, so that only sampled values are shown. This 
ensures that the readings viewed are actual bit values, in case one is looking for “stuck bits.”)

Displaying raw floating point data brings up another problem, in that only 6 characters are 
made available for the number field on the 32-character display line of the little consoles. 
How can we show full precision floating point values, which should include at least 6 
significant figures? The easiest approach for this is to ignore it and not show the increased 
precision available. Another approach is to leave out display of the units field for floating 
point channels. This would free up 4 more characters to make a 10-character floating point 
field, which is enough for a sign, a decimal point, and 8 digits. If the number is less than 1.0, 
an initial 0 is traditional. If the value is less than 0.1, then its value starts out with “0.0”. If it 
were desired to show the floating point value in hexadecimal, 8 characters would be needed 
just for that.

Is there a need to indicate on the display whether a channel is raw floating point or not? If we 
allow the hexadecimal option to show 8 hexadecimal digits, the user could push the Hex 
button to obtain this information. Perhaps this is good enough for the purpose.

Support for the informal plotting (64 X 33 pixels) on the little console hardware displays may 
be more difficult for such channels. The current support is strongly based upon 16-bit integer. 
But this plotting capability is not used much, so it may be easiest to skip raw floating point 
support for it.

What about knob control for floating point channels? This should probably not be supported 
at all, as it would be difficult to assign suitable scaling between knob clicks and changes in 
the floating point setting value.

Post-implementation notes
The PAGEPARM program was modified along the lines suggested above. In order to get 

enough room to display the increased precision available with floating point, the units text is 
not shown. No special indication is made on the line that identifies raw floating point 
channels, but one can use the Hex key to determine which channels are of this type. Informal 
plotting is not supported for such channels. Knob control is not supported, either. While 
these modifications were made, the support for DZero 16-character names was removed, as 
the DZero protocol is no longer supported by the underlying system code. The total size of 
the resulting executable code changed from 10.8K to 11.6K bytes.

FDATA Support p. 2


